Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
1.
Elife ; 122023 10 20.
Article in English | MEDLINE | ID: mdl-37862096

ABSTRACT

Plants produce new organs post-embryonically throughout their entire life cycle. This is due to stem cells present in the shoot and root apical meristems, the SAM and RAM, respectively. In the SAM, stem cells are located in the central zone where they divide slowly. Stem cell daughters are displaced laterally and enter the peripheral zone, where their mitotic activity increases and lateral organ primordia are formed. How the spatial arrangement of these different domains is initiated and controlled during SAM growth and development, and how sites of lateral organ primordia are determined in the peripheral zone is not yet completely understood. We found that the SHORTROOT (SHR) transcription factor together with its target transcription factors SCARECROW (SCR), SCARECROW-LIKE23 (SCL23) and JACKDAW (JKD), promotes formation of lateral organs and controls shoot meristem size. SHR, SCR, SCL23, and JKD are expressed in distinct, but partially overlapping patterns in the SAM. They can physically interact and activate expression of key cell cycle regulators such as CYCLIND6;1 (CYCD6;1) to promote the formation of new cell layers. In the peripheral zone, auxin accumulates at sites of lateral organ primordia initiation and activates SHR expression via the auxin response factor MONOPTEROS (MP) and auxin response elements in the SHR promoter. In the central zone, the SHR-target SCL23 physically interacts with the key stem cell regulator WUSCHEL (WUS) to promote stem cell fate. Both SCL23 and WUS expression are subject to negative feedback regulation from stem cells through the CLAVATA signaling pathway. Together, our findings illustrate how SHR-dependent transcription factor complexes act in different domains of the shoot meristem to mediate cell division and auxin dependent organ initiation in the peripheral zone, and coordinate this activity with stem cell maintenance in the central zone of the SAM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Meristem , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cyclins/metabolism
2.
Plant Physiol ; 194(1): 412-421, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37757882

ABSTRACT

Fertilization in Arabidopsis (Arabidopsis thaliana) is a highly coordinated process that begins with a pollen tube delivering the 2 sperm cells into the embryo sac. Each sperm cell can then fertilize either the egg or the central cell to initiate embryo or endosperm development, respectively. The success of this double fertilization process requires a tight cell cycle synchrony between the male and female gametes to allow karyogamy (nuclei fusion). However, the cell cycle status of the male and female gametes during fertilization remains elusive as DNA quantification and DNA replication assays have given conflicting results. Here, to reconcile these results, we quantified the DNA replication state by DNA sequencing and performed microscopic analyses of fluorescent markers covering all phases of the cell cycle. We show that male and female Arabidopsis gametes are both arrested prior to DNA replication at maturity and initiate their DNA replication only during fertilization.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Seeds/genetics , Seeds/metabolism , Reproduction , Fertilization , Arabidopsis Proteins/metabolism , Cell Division , Germ Cells/metabolism
3.
Eur J Cell Biol ; 102(4): 151345, 2023 12.
Article in English | MEDLINE | ID: mdl-37596137
4.
Nat Commun ; 14(1): 1270, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882445

ABSTRACT

Most cellular proteins involved in genome replication are conserved in all eukaryotic lineages including yeast, plants and animals. However, the mechanisms controlling their availability during the cell cycle are less well defined. Here we show that the Arabidopsis genome encodes for two ORC1 proteins highly similar in amino acid sequence and that have partially overlapping expression domains but with distinct functions. The ancestral ORC1b gene, present before the partial duplication of the Arabidopsis genome, has retained the canonical function in DNA replication. ORC1b is expressed in both proliferating and endoreplicating cells, accumulates during G1 and is rapidly degraded upon S-phase entry through the ubiquitin-proteasome pathway. In contrast, the duplicated ORC1a gene has acquired a specialized function in heterochromatin biology. ORC1a is required for efficient deposition of the heterochromatic H3K27me1 mark by the ATXR5/6 histone methyltransferases. The distinct roles of the two ORC1 proteins may be a feature common to other organisms with duplicated ORC1 genes and a major difference with animal cells.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle Proteins , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Cycle Proteins/genetics , Methyltransferases , Origin Recognition Complex/genetics , S Phase/genetics
5.
Trends Plant Sci ; 28(5): 537-543, 2023 05.
Article in English | MEDLINE | ID: mdl-36740490

ABSTRACT

Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.


Subject(s)
Agriculture , Greenhouse Gases , Greenhouse Gases/analysis , Plants , Climate Change , Greenhouse Effect
6.
bioRxiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168452

ABSTRACT

Arabidopsis root tip regeneration requires cell division and cellular reprogramming. Here, we present new datasets that describe the cell cycle in Arabidopsis roots that maintain developmental context and cell-type resolution and provide an expanded set of cell cycle phase transcriptional markers. Using these data, we provide in vivo confirmation of a longstanding model in plants that glutathione (GSH) and reactive oxygen species (ROS) vary in a cell cycle dependent manner. We then demonstrate using long term time lapse imaging that cells in G1 phase undergo a transient peak of GSH prior to a tissue-wide coordinated entry into S phase. This coordinated S phase entry precedes a period of fast divisions, which we show appears to potentiate cellular reprogramming during regeneration. Taken together, this work demonstrates a role for GSH in coordinating cell cycle regulation and cellular reprogramming during regeneration.

7.
Int J Mol Sci ; 23(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35897730

ABSTRACT

Production of new cells as a result of progression through the cell division cycle is a fundamental biological process for the perpetuation of both unicellular and multicellular organisms. In the case of plants, their developmental strategies and their largely sessile nature has imposed a series of evolutionary trends. Studies of the plant cell division cycle began with cytological and physiological approaches in the 1950s and 1960s. The decade of 1990 marked a turn point with the increasing development of novel cellular and molecular protocols combined with advances in genetics and, later, genomics, leading to an exponential growth of the field. In this article, I review the current status of plant cell cycle studies but also discuss early studies and the relevance of a multidisciplinary background as a source of innovative questions and answers. In addition to advances in a deeper understanding of the plant cell cycle machinery, current studies focus on the intimate interaction of cell cycle components with almost every aspect of plant biology.


Subject(s)
Plant Cells , Plants , Cell Cycle/genetics , Cell Division , Plants/genetics , Plants/metabolism
8.
Dev Cell ; 57(5): 569-582.e6, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35148836

ABSTRACT

Differentiation of specialized cell types requires precise cell-cycle control. Plant stomata are generated through asymmetric divisions of a stem-cell-like precursor followed by a single symmetric division that creates paired guard cells surrounding a pore. The stomatal-lineage-specific transcription factor MUTE terminates the asymmetric divisions and commits to differentiation. However, the role of cell-cycle machineries in this transition remains unknown. We discover that the symmetric division is slower than the asymmetric division in Arabidopsis. We identify a plant-specific cyclin-dependent kinase inhibitor, SIAMESE-RELATED4 (SMR4), as a MUTE-induced molecular brake that decelerates the cell cycle. SMR4 physically and functionally associates with CYCD3;1 and extends the G1 phase of asymmetric divisions. By contrast, SMR4 fails to interact with CYCD5;1, a MUTE-induced G1 cyclin, and permits the symmetric division. Our work unravels a molecular framework of the proliferation-to-differentiation switch within the stomatal lineage and suggests that a timely proliferative cell cycle is critical for stomatal-lineage identity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle , Cell Differentiation , Cell Lineage , Deceleration , Gene Expression Regulation, Plant , Plant Stomata
9.
Front Plant Sci ; 13: 984702, 2022.
Article in English | MEDLINE | ID: mdl-36589114

ABSTRACT

Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.

10.
Plant Cell ; 34(1): 193-208, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34498091

ABSTRACT

The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.


Subject(s)
Cell Cycle , Cell Shape , Cell Size , Plant Cells/physiology , Plant Development , Cell Division
11.
J Exp Bot ; 72(19): 6708-6715, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34159378

ABSTRACT

Organogenesis in plants is primarily postembryonic and relies on a strict balance between cell division and cell expansion. The root is a particularly well-suited model to study cell proliferation in detail since the two processes are spatially and temporally separated for all the different tissues. In addition, the root is amenable to detailed microscopic analysis to identify cells progressing through the cell cycle. While it is clear that cell proliferation activity is restricted to the root apical meristem (RAM), understanding cell proliferation kinetics and identifying its parameters have required much effort over many years. Here, we review the main concepts, experimental settings, and findings aimed at obtaining a detailed knowledge of how cells proliferate within the RAM. The combination of novel tools, experimental strategies, and mathematical models has contributed to our current view of cell proliferation in the RAM. We also discuss several lines of research that need to be explored in the future.


Subject(s)
Meristem , Plant Roots , Cell Cycle , Cell Division , Cell Proliferation , Kinetics
12.
Dev Cell ; 56(13): 1945-1960.e7, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34192526

ABSTRACT

Establishing the embryonic body plan of multicellular organisms relies on precisely orchestrated cell divisions coupled with pattern formation, which, in animals, are regulated by Polycomb group (PcG) proteins. The conserved Polycomb Repressive Complex 2 (PRC2) mediates H3K27 trimethylation and comes in different flavors in Arabidopsis. The PRC2 catalytic subunit MEDEA is required for seed development; however, a role for PRC2 in embryonic patterning has been dismissed. Here, we demonstrate that embryos derived from medea eggs abort because MEDEA is required for patterning and cell lineage determination in the early embryo. Similar to PcG proteins in mammals, MEDEA regulates embryonic patterning and growth by controlling cell-cycle progression through repression of CYCD1;1, which encodes a core cell-cycle component. Thus, Arabidopsis embryogenesis is epigenetically regulated by PcG proteins, revealing that the PRC2-dependent modulation of cell-cycle progression was independently recruited to control embryonic cell proliferation and patterning in animals and plants.


Subject(s)
Arabidopsis Proteins/genetics , Cyclin D3/genetics , Plant Development/genetics , Polycomb-Group Proteins/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Body Patterning/genetics , Cell Proliferation/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Histones/genetics , Methylation , Polycomb Repressive Complex 2/genetics , Seeds/genetics , Seeds/growth & development
13.
Science ; 372(6547): 1176-1181, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34112688

ABSTRACT

How eukaryotic cells assess and maintain sizes specific for their species and cell type remains unclear. We show that in the Arabidopsis shoot stem cell niche, cell size variability caused by asymmetric divisions is corrected by adjusting the growth period before DNA synthesis. KIP-related protein 4 (KRP4) inhibits progression to DNA synthesis and associates with mitotic chromosomes. The F BOX-LIKE 17 (FBL17) protein removes excess KRP4. Consequently, daughter cells are born with comparable amounts of KRP4. Inhibitor dilution models predicted that KRP4 inherited through chromatin would robustly regulate size, whereas inheritance of excess free KRP4 would disrupt size homeostasis, as confirmed by mutant analyses. We propose that a cell cycle regulator, stabilized by association with mitotic chromosomes, reads DNA content as a cell size-independent scale.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , DNA, Plant/metabolism , Meristem/cytology , Plant Cells/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Asymmetric Cell Division , Cell Cycle , Cell Cycle Checkpoints , Cell Division , Cell Size , Chromatin/metabolism , Chromosomes, Plant/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , DNA Replication , F-Box Proteins/metabolism , G1 Phase , Mitosis , Models, Biological , Mutation , S Phase
14.
Plant Cell Physiol ; 62(8): 1231-1238, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34021583

ABSTRACT

Estimation of cell-cycle parameters is crucial for understanding the developmental programs established during the formation of an organism. A number of complementary approaches have been developed and adapted to plants to assess the cell-cycle status in different proliferative tissues. The most classical methods relying on metabolic labeling are still very much employed and give valuable information on cell-cycle progression in fixed tissues. However, the growing knowledge of plant cell-cycle regulators with defined expression pattern together with the development of fluorescent proteins technology enabled the generation of fusion proteins that function individually or in conjunction as cell-cycle reporters. Together with the improvement of imaging techniques, in vivo live imaging to monitor plant cell-cycle progression in normal growth conditions or in response to different stimuli has been possible. Here, we review these tools and their specific outputs for plant cell-cycle analysis.


Subject(s)
Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Cell Cycle/physiology , Fluorescent Dyes , Imaging, Three-Dimensional/methods , Staining and Labeling/methods
16.
Trends Plant Sci ; 26(1): 10-12, 2021 01.
Article in English | MEDLINE | ID: mdl-33203531

ABSTRACT

Chromatin features are correctly transferred to the daughter strands during genome replication. Recent discoveries demonstrate that replicative DNA polymerases interact physically with histone dimers and tetramers, facilitating histone transfer at the DNA replication fork. This role may explain the transcriptional phenotypic defects of Arabidopsis mutants in genes encoding DNA polymerase subunits.


Subject(s)
Arabidopsis , Chromatin , Arabidopsis/genetics , Arabidopsis/metabolism , Chromatin/genetics , DNA Replication/genetics , Histones/metabolism
17.
Plant J ; 106(1): 74-85, 2021 04.
Article in English | MEDLINE | ID: mdl-33354856

ABSTRACT

Programmed cell death (PCD) is crucial for development and homeostasis of all multicellular organisms. In human cells, the double role of extra-mitochondrial cytochrome c in triggering apoptosis and inhibiting survival pathways is well reported. In plants, however, the specific role of cytochrome c upon release from the mitochondria remains in part veiled yet death stimuli do trigger cytochrome c translocation as well. Here, we identify an Arabidopsis thaliana 14-3-3ι isoform as a cytosolic cytochrome c target and inhibitor of caspase-like activity. This finding establishes the 14-3-3ι protein as a relevant factor at the onset of plant H2 O2 -induced PCD. The in vivo and in vitro studies herein reported reveal that the interaction between cytochrome c and 14-3-3ι exhibits noticeable similarities with the complex formed by their human orthologues. Further analysis of the heterologous complexes between human and plant cytochrome c with plant 14-3-3ι and human 14-3-3ε isoforms corroborated common features. These results suggest that cytochrome c blocks p14-3-3ι so as to inhibit caspase-like proteases, which in turn promote cell death upon H2 O2 treatment. Besides establishing common biochemical features between human and plant PCD, this work sheds light onto the signaling networks of plant cell death.


Subject(s)
14-3-3 Proteins/metabolism , Apoptosis/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , Hydrogen Peroxide
18.
Nat Plants ; 6(11): 1330-1334, 2020 11.
Article in English | MEDLINE | ID: mdl-32989288

ABSTRACT

Assessing cell proliferation dynamics is crucial to understand the spatiotemporal control of organogenesis. Here we have generated a versatile fluorescent sensor, PlaCCI (plant cell cycle indicator) on the basis of the expression of CDT1a-CFP, H3.1-mCherry and CYCB1;1-YFP, that identifies cell cycle phases in Arabidopsis thaliana. This tool works in a variety of organs, and all markers and the antibiotic resistance are expressed from a single cassette, facilitating the selection in mutant backgrounds. We also show the robustness of PlaCCI line in live-imaging experiments to follow and quantify cell cycle phase progression.


Subject(s)
Arabidopsis/metabolism , Cell Cycle , Cell Size , Cloning, Molecular , Flow Cytometry , Fluorescence , Meristem/physiology , Microscopy, Confocal , Plant Leaves/cytology , Plant Roots/physiology , Plants, Genetically Modified , Spatio-Temporal Analysis
19.
EMBO J ; 39(19): e105802, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32865261

ABSTRACT

The human retinoblastoma (RB1) protein is a tumor suppressor that negatively regulates cell cycle progression through its interaction with members of the E2F/DP family of transcription factors. However, RB-related (RBR) proteins are an early acquisition during eukaryote evolution present in plant lineages, including unicellular algae, ancient plants (ferns, lycophytes, liverworts, mosses), gymnosperms, and angiosperms. The main RBR protein domains and interactions with E2Fs are conserved in all eukaryotes and not only regulate the G1/S transition but also the G2/M transition, as part of DREAM complexes. RBR proteins are also important for asymmetric cell division, stem cell maintenance, and the DNA damage response (DDR). RBR proteins play crucial roles at every developmental phase transition, in association with chromatin factors, as well as during the reproductive phase during female and male gametes production and embryo development. Here, we review the processes where plant RBR proteins play a role and discuss possible avenues of research to obtain a full picture of the multifunctional roles of RBR for plant life.


Subject(s)
Asymmetric Cell Division , Cell Division , G2 Phase , Plant Proteins/metabolism , Plants/metabolism , Retinoblastoma Protein/metabolism , Humans , Seeds/metabolism
20.
Inorg Chem ; 59(11): 7779-7788, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32412249

ABSTRACT

The controlled release of functionally active compounds is important in a variety of applications. Here, we have synthesized, characterized, and studied the magnetic properties of three novel metal-metal-bonded tris(formamidinato) Ru25+ complexes. We have used different auxin-related hormones, indole-3-acetate (IAA), 2,4-dichlorophenoxyacetate (2,4-D), and 1-naphthaleneacetate (NAA), to generate [Ru2Cl(µ-DPhF)3(µ-IAA)] (RuIAA), [Ru2Cl(µ-DPhF)3(µ-2,4-D)] (Ru2,4-D), and [Ru2Cl(µ-DPhF)3(µ-NAA)] (RuNAA) (DPhF = N,N'-diphenylformamidinate). The crystal structures of RuIAA, RuIAA·THF, Ru2,4-D·CH2Cl2, and RuNAA·0.5THF have been determined by single-crystal X-ray diffraction. To assess the releasing capacity of the bound hormone, we have employed a biological assay that relied on Arabidopsis thaliana plants expressing an auxin reporter gene and we demonstrate that the release of the phytohormones from RuIAA, Ru2,4-D, and RuNAA is pH- and time-dependent. These studies serve as a proof of concept showing the potential of these types of compounds as biological molecule carriers.


Subject(s)
Arabidopsis/chemistry , Coordination Complexes/chemistry , Indoleacetic Acids/chemistry , Plant Growth Regulators/chemistry , Ruthenium/chemistry , Arabidopsis/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Hydrogen-Ion Concentration , Indoleacetic Acids/metabolism , Magnetic Phenomena , Molecular Structure , Plant Growth Regulators/chemical synthesis , Plant Growth Regulators/metabolism , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...